
372. Experiments on the Synthesis of isoQuinoline Derivatives. Part II.

By KARTAR S. NARANG, JNANENDRA N. RÂY, and SANTOKH S. SILOOJA.

ATTEMPTS to prepare homologues of papaverine, containing a substituted 1- β -phenylethyl group (I) in place of the substituted 1-benzyl group, on the lines of the Bischler-Napieralski method were successful, but an alternative method, dependent on the condensation of (II) with aldehydes, failed because only o-nitrobenzaldehyde would react with this substance.

The acid amides derived from phthalic and camphoric anhydrides with β -piperonylethylamine and β -veratrylethylamine respectively gave the substances (III) and (IV).

EXPERIMENTAL.

A mixture of 1-methylnorhydrastinine (II; $2\text{RO} = \text{CH}_2\text{O}_2$) (Decker, Kropp, Hoyer, and Becker, Annalen, 1913, **395**, 299) (0.5 g.), o-nitrobenzaldehyde (0.4 g.), and a trace of NaOEt in abs. EtOH (10 c.c.), warmed for 5 mins. and kept for 2 hrs. at room temp., deposited yellow cryst. 1-o-*nitro*styrylnorhydrastinine (0.75 g.), m. p. 132° after recrystn. from EtOH (Found : N, 8.6. C₁₈H₁₄O₄N₂ requires N, 8.7%).

1-Methylhydrastininium iodide (0.5 g.) (m. p. 257° after crystn. from C_6H_6), prepared from (II) and MeI, was reduced by hot H_2O (25 c.c.), Al-Hg, and a few drops of conc. HCl to 1-methyldihydrohydrastinine (0.2 g.); *picrate*, m. p. 192—193° (Found : N, 12.8. $C_{18}H_{18}O_9N_4$ requires N, 12.9%); hydrochloride, pale yellow needles, m. p. 221°.

The amide (m. p. 146°. Found : N, 4.0; calc., 4.0%) prepared from β ·3: 4-dimethoxyphenylpropionyl chloride and β -piperonylethylamine was dissolved (2 g.) in toluene (80 c.c.) and heated with POCl₃ (1.3 g.) at 110° for 1 hr. From the product, hot dil. HCl aq. (1:1) extracted $1-\beta$ ·3': 4'-dimethoxyphenylethylnorhydrastinine (1 g.), m. p. 90° after crystn. from dil. EtOH (Found : N, 4.4. C₂₀H₂₁O₄N requires N, 4.1%). This compound (1.5 g.) and MeI (2.5 g.) in warm dry C₆H₆ (10 c.c.) gave a cryst. methiodide (1.7 g.), m. p. 196° (Found : N, 2.6. C₂₁H₂₄O₄NI requires N, 2.9%). The methiodide (0.4 g.), reduced with H₂O and Al-Hg as described above, furnished 1- β -3': 4'-dimethoxyphenylethyldihydrohydrastinine (0.25 g.) (I; 2RO = CH₂O₂, R' = Me), m. p. 101° after crystn. from C₆H₆-ligroin (Found : N, 4.2. C₂₁H₂₅O₄N requires N, 3.9%).

 β -Piperonylpropiono- β -3': 4'-dimethoxyphenylethylamide (m. p. 149° after crystn. from dil. EtOH. Found: N, 4·1. C₂₀H₂₃O₅N requires N, 3·9%) was treated (3·0 g.) in CHCl₃ (30 c.c.) with PCl₅ (4 g.), the solvent removed in vac. after 12 hrs., and the residue extracted with hot dil. HCl aq. (1:1); from the extract, the hydrochloride of the dihydroisoquinoline crystallised in bright yellow needles, m. p. 187—188°. 6:7-Dimethoxy-1- β -piperonylethyl-3:4-dihydroisoquinoline (1·2 g.) had m. p. 75·5° after crystn. from xylene-ligroin; it gave a deep greenish-yellow fluorescence in C₆H₆ (Found : N, 4·4. C₂₀H₂₁O₄N requires N, 4·1%). The methiodide, m. p. 175° after crystn. from EtOAc-MeOH (Found : N, 3·0. C₂₁H₂₄O₄NI requires N, 2·9%), reduced (0·8 g.) with Al-Hg, gave the tetrahydroisoquinoline (0·5 g.), m. p. 101° (Found : N, 4·15. C₂₁H₂₅O₄N requires N, 3·9%), which formed a picrate, m. p. 137° (Found : N, 9·6. C₂₇H₂₈O₁₁N₄ requires N, 9·6%). A trace of the base gave in conc. H₂SO₄ a permanganate-violet colour which became yellow on addition of H₂O, then persistent deep yellow on addition of a drop of HNO₃.

The following compounds were prepared by the methods described above. β -Piperonylpropiono- β -piperonylethylamide, m. p. 135° (Found : N, 4.4. $C_{19}H_{19}O_5N$ requires N, $4\cdot 1\%$). $1\cdot\beta\cdot P_i$ peronylethylnorhydrastinine (yield, 33%) and 73% by the PCl₅ and the POCl₃ method respectively), m. p. 105° (Found : N, 4.4. C₁₉H₁₂O₄N requires N, 4.3%); methiodide, m. p. 229° (Found : N, 3.05. C₁₉H₁₇O₄N,MeI requires N, 3.0%). 1-β-Piperonylethyldihydrohydrastinine, an oil; picrate, m. p. 102° (Found : N, 10.0. C20H21O4N,C6H3O7N3 requires N, 9.9%). β -3: 4-Dimethoxyphenylpropiono- β -3': 4'-dimethoxyphenylethylamide gave 6:7:3':4'-tetramethoxy-1- β -phenylethyl-3:4-dihydroisoquinoline, m. p. 94° (Found : N, 4.1. C21H25O4N requires N, 3.95%); *picrate*, m. p. 129° (Found : N, 9.4. $C_{21}H_{25}O_4N, C_6H_3O_7N_3$ requires N, 9.6%); methiodide (Found : N, 2.9. C21H25O4N, MeI requires N, 2.8%). 6:7:3':4'-Tetramethoxy $\cdot 1 \cdot \beta \cdot p$ hence the probability $\cdot 2 \cdot m$ and $1 : 2 : 3 : 4 \cdot tetrahydro iso quinoline,$ an oil; picrate, m. p. 166° (Found : N, 9.3. C22H29O4N,C6H3O7N3 requires N, 9·3%).

 β -Piperonylethylamine (3 g.) and phthalic anhydride (2.7 g.) were heated together with a little NaOAc at 150—160° for 3 hrs., and the cooled mass was extracted with 5% NaOH aq. The insol. *phthalo-\beta-piperonylethylimide* (2 g.) had m. p. 140° after crystn. from EtOH (Found : N, 4.7. C₁₇H₁₃O₄N requires N, 4.7%). The alkaline filtrate on acidification furnished β -piperonylethylphthalamic acid, m. p. 143° after crystn. from dil. EtOH (Found : N, 4.5. C₁₇H₁₅O₅N requires N, 4.5%).

The aminic acid (0.6 g.), dissolved in dry $CHCl_3$ (30 c.c.), was heated with PCl_5 (0.8 g.) on the water-bath for 6 hrs., left for 4 days at room temp., and again refluxed for $\frac{1}{2}$ hr. after addition of more $CHCl_3$ (20 c.c.). The solvent was removed, and the residue extracted with hot dil. HCl aq., dissolved in EtOH, treated with alkali, and acidified with AcOH; 6 : 7-methylenedioxy-1-phenyl-3 : 4-dihydroisoquinoline-2'-carboxylic acid (III) (0.1 g.), m. p. 175°, was obtained (Found : C, 69.0; H, 4.8; N, 4.9. $C_{17}H_{13}O_4N$ requires C, 69.1; H, 4.4; N, 4.7%).

The aminic acid (3.0 g.) prepared from camphoric anhydride and β -3:4dimethoxyphenylethylamine in toluene (30 c.c.) was converted into the isoquinoline (IV) in 40% yield by POCl₃ (10 g.) at 110°. The reaction mixture was extracted with cold dil. HCl aq. (prolonged contact), and the extract was made alkaline with NH₃ aq. and then faintly acid with AcOH and extracted with much C₆H₆. The substance crystallised from C₆H₆-ligroin in silky needles, m. p. 65° (evolution of CO₂ at 85°), and showed a bluishgreen fluorescence in EtOAc (Found: C, 66·2; H, 7·9; N, 4·3. C₂₀H₂₇O₄N requires C, 66·3; H, 7·8; N, 4·1%). Veratrylidene- β -piperonylethylamine (m. p. 78°. Found : N, 4.6; calc., 4.5%), prepared from veratraldehyde and the amine, was converted into the methiodide, m. p. 259° (cryst. from hot amyl alcohol), which (0.5 g.) in aq. EtOH was shaken with excess of Ag₂O (neutral); from the resulting solution, an oily base was isolated which formed a picrate, m. p. 179°, not identical with the picrate of 1.3': 4'-dimethoxyphenyldihydrohydrastinine.

THE UNIVERSITY, LAHORE.

[Received, August 15th, 1932.]